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ABSTRACT

The skin, lateral line, gills and gastrointestinal tract or a combination of these organs are 
suggested to be infection routes in fish. This presentation will present some information on 
pathogenesis, protection against bacterial adhesion, autochthonous microbiota in the 
gastrointestinal tract and prebiotics. This information is important when discussing the use of 
probiotics in aquaculture.

Intensive fish production has increased the risk of infectious diseases and there is a 
growing need to find alternatives to antibiotic treatment for disease control as indiscriminate use 
of antibiotics in many parts of the aquaculture industry has led to the development of antibiotic 
resistance in bacteria. Today, a range of microorganisms have been suggested as or evaluated as 
fish probiotics. These include lactic acid bacteria, Bacillus species, Pseudomonas species, 
Vibrio species and other Gram-negatives. However, research in probiotics for aquaculture is at an 
early stage and much work is still needed.

Another aspect on fish health is the use of prebiotics to increase the population level of 
already beneficial bacteria colonizing the gastrointestinal tract and the effect of diet in disease 
resistance.

INTRODUCTION

Before presenting the hard facts on probiotics in aquaculture a short background about 
pathogenesis, protection against bacterial adhesion and the autochthonous microbiota in the 
gastrointestinal tract is first provided here. This background information is important when 
discussing the use of probiotics in aquaculture. Pathogenic microorganisms have evolved 
mechanisms to target skin, gills or gastrointestinal tract as a points of entry, and today it is 
generally accepted that the three major routes of infection in fish are through: (a) skin (Kawai et 
al., 1981; Muroga and de la Cruz, 1987; Kanno et al., 1990; Magarinos et al., 1995; Svendsen and 
Bøgvald, 1997; Spanggard et al., 2001); (b) gills (Hjeltnes et al., 1987; Baudin Laurencin and 
Germon, 1987; Svendsen et al., 1999); and (c) gastrointestinal tract (Sakai, 1979; Rose et al., 1989; 
Chair et al., 1994; Olsson, 1995; Grisez et al., 1996; Olsson et al., 1996; Romalde et al., 1996; Jöborn 
et al., 1997; Robertson et al., 2000; Lødemel et al., 2001).

107



Pathogenicity can be divided into four different phases (Birkbeck and Ringø, 2002): (1) 
the initial phase where the pathogen enters the host‘s environment, including the gastrointestinal 
tract; (2) the exponential phase where the pathogen adheres to and colonizes mucosal surfaces, 
replicates to sufficient numbers and translocate into host enterocytes; (3) the stationary phase 
where the pathogen replicates within the host and circumvents the host defence system. In this 
phase the host is moribund and this can quickly be followed by (4) the death phase.

In aquatic ecosystems, the intimate relationships between microorganisms and other biota 
and the constant flow of water through the gastrointestinal tract of fish and invertebrates will also 
affect their indigenous microbiota. Against this background, we may assume that the natural microbiota 
on eggs, larvae, fry, juveniles and adult fish may help to protect against colonization by a harmful 
microbiota. Another aspect seen from a microbial point of view is the fact that the microbiota of 
intensive rearing systems differs dramatically from that in the sea, and it is influenced by many factors 
such as; rearing techniques, nutrient, disinfection techniques and the use of antibiotics.

In order to adhere successfully, colonize and produce disease the pathogen must 
overcome the host defence system. It is well known that stress from environmental factors, such 
as oxygen tension, water temperature and water salinity, are important in increasing the 
susceptibility of fish to microbial pathogens. The water milieu can also facilitate transmission of 
these pathogens.

The pathogenesis of Vibrio infections in mammals is primarily a gut infection, and it is 
therefore logical to ask whether the same is true in fish. Fish pathogenic bacteria, such as Vibrio 
salmonicida and V. anguillarum, have been shown in vivo to adhere to the intestinal epithelium 
of fish larvae and to promote severe destruction of microvilli (Olafsen and Hansen, unpublished 
results, cited in Knudsen et al., 1999). Severe damage with loss of cellular integrity was also 
noted in midgut of spotted wolffish (Anarhichas minor Olafsen) fry infected by V. anguillarum 
(Ringø, Mikkelsen and Myklebust, unpublished data, cited in Ringø et al., 2002a) (Fig. 1), compared 
to normal enterocytes (Fig. 2) (Olsen, Myklebust and Ringø, unpublished data). Scanning electron 
microscopy investigations of human intestinal mucosa infected with enteropathogenic Escherichia 
coli (EPEC), showed that EPEC adhere intimately in microcolonies and cause gross alterations at 
the apical surface of infected enterocytes (Knutton et al., 1987; Knutton, 1995).

Figure 1. Spotted wolffish (Anarhichas minor 
Olafsen) fry infected by Vibrio 
anguillarum. Notice the severe cellular 
damage. (after Ringø, Mikkelsen and 
Myklebust, unpublished data)
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Figure 2. Normal enterocytes. Cells display the 
normal columnar arrangement with intact 
intracellular junctions and a regular, well- 
defined microvillous brush border (mv) at 
the cell apex. (after Olsen, Myklebust 
and Ringø, unpublished data)

The susceptibility of early life stages of turbot and Atlantic halibut (Hippoglossus 
hippoglossus L.) to Aeromonas salmonicida ssp. salmonicida was studied in challenge experiments 
(Bergh et al., 1997). Larvae of both species experienced high mortality during the yolk sac stage, 
and the authors suggested that this was as a result of the challenge test. However, the bacterium 
could not be recovered from the larvae by culture, but the pathogen was shown to be present in 
the intestinal lumen of some turbot larvae examined using immunohistochemical techniques (Fig. 
3). Based on this result, the authors (Bergh et al., 1997) proposed that A. salmonicida ssp. 
salmonicida may persist in the larvae.

Figure 3. Semithin sections from turbot (Scophthalmus maximus L.) larva 
of group As-A, challenged with Aeromonas salmonicida ssp. 
salmonicida stained with Giemsa. Cell-like structures can be 
seen associated with positively red-stained bacteria-like structures 
(arrow). Scale bar is 10 µm. (after Bergh et al., 1997)
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Endocytosis of bacteria by enterocytes has been observed in the hindgut of several fish 
species (Ringø et al., 2002a). In their study on turbot (Scophthalmus maximus L.) larvae, Grisez et 
al. (1996) reported free V. anguillarum from an endosome in the lamina propria by 
immunohistochemical staining (Fig. 4).

Figure 4. Vibrio anguillarum infection in turbot 
(Scophthalmus maximus L.) after oral challenge. 
Vibrio anguillarum attached to the microvilli 
(brush border) of the intestinal epithelium. 
(after Grisez et al., 1996)

Readers with special interest in pathogenesis and the gastrointestinal tract of growing 
fish are referred to the review of Birkbeck and Ringø (2002).

PROTECTION AGAINST BACTERIAL ADHESION MUCUS

The internal surface of the host is the first defence barrier to infection. Intestinal mucins 
secreted by specialized epithelial goblet cells located in the intestinal enterocytes form a viscous, 
hydrated blanket on the surface of the intestinal mucosa that protects the delicate columnar 
epithelium. This is thought to be a vital component of the intestinal mucosal barrier in prevention 
of colonization by pathogens in both fish and endothermic animals (Florey, 1962; Forstner, 1978; 
Westerdahl et al., 1991; Maxson et al., 1994; Mims et al., 1995; Henderson et al., 1999). 
Gastrointestinal mucus is thought to have three major functions: (1) protection of the underlying 
mucosa from chemical and physical damage; (2) lubrication of the mucosal surface; and (3) to 
provide a barrier against enteroadherence of pathogenic organisms to the underlying mucosal 
epithelium.

It is well known that intestinal mucus is composed almost entirely of water (90-95%) and 
the electrolyte composition is similar to plasma, accounting for about 1% of the mucus weight. 
The remaining 4-10% is composed of high-molecular-weight glycoproteins (mucins), consisting 
of a protein core with numerous carbohydrate (fucose and galactose) sidechains. Hydrolysis of 
intestinal mucus material of rainbow trout liberated increased amounts of N-acetylgalactosamine 
and N-acetylglucosamine (O‘Toole et al., 1999), indicated that these carbohydrates may be present 
as mucin-bound moieties in fish intestinal mucus as the case for mucus from other animal species 
(Roussel et al., 1988). The majority of intestinal mucus-associated lipids in rainbow trout partitioned 
to the organic phase during extraction with chloroform/methanol and was found to contain
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saturated and unsaturated free fatty acids, phospholipids, bile acid, cholesterol, and 
monoglycerides and diglycerides (O‘Toole et al., 1999).

Olsson et al. (1992) put forward the hypothesis that the gastrointestinal tract is a site of 
colonization of V. anguillarum as the pathogen could utilize diluted turbot intestinal mucus as 
sole nutrient source. In a later study, Garcia et al. (1997) concluded that Atlantic salmon (Salmo 
salar L.) intestinal mucus is an excellent growth medium of V. anguillarum. This result is an 
important aspect of the pathogenesis of this pathogen.

The mucous blanket is constantly renewed by the secretion of high molecular weight 
glycoproteins from individual goblet cells throughout the epithelium. Goblet cells differentiate in 
the lower portion of the crypts of both small and large intestine and gradually migrate onto the 
villi or mucosal surface.

In an early study on histopathology changes caused by V. anguillarum, Ransom et al. 
(1984) found large amounts of goblet (mucus producing) cells in the anterior part of gastrointestinal 
tract of infected chum salmon (Oncorhynchus keta Walbaum). The first reaction of Arctic charr 
(Salvelinus alpinus L.), a salmonid fish, infected by pathogenic bacteria (A. salmonicida ssp. 
salmonicida) the causative agent of furunculosis is to peel off the infected mucus by increased 
goblet (mucus producing) cell production compared to uninfected fish (Lødemel et al., 2001) (Fig. 
5). A similar reaction to that found in infected Arctic charr, is also observed in rabbit and rats 
infected by pathogenic bacteria (Mantle et al., 1989, 1991; Enss et al., 1966), and this reaction may 
be considered a normal host response to particular intestinal infections (Mims et al., 1995).

Figure 5. Light microscopic view of villi in the midgut from Arctic charr 
(Salvelinus alpinus L.) fed soybean oil prior to challenge and post 
challenge with the fish pathogen Aeromonas salmonicida ssp. 
salmonicida. Note the substantially more conspicuous goblet 
(mucus producing) cells (arrows) along the villi of infected fish. 
(after Lødemel et al., 2001)

Furthermore, the peel off of mucus might lead to loss of the autochthonous (indigenous) 
microbiota closely associated with the intestinal epithelium forming one of the first defence to 
limit colonization of pathogenic bacteria.
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AUTOCHTHONOUS MICROBIOTA

Savage (1983) defined bacteria isolated from the digestive tract as either autochthonous 
(indigenous) or allochthonous (transient). Recently, Ringø and Birkbeck (1999) presented a list of 
criteria (found in healthy animals, colonize early stages and persist throughout life, found in both 
free-living and hatchery-cultured fish, grow anaerobically, and found associated with epithelial 
mucosal in the digestive tract) for testing autochthony of bacteria from the gastrointestinal tract 
of fish. To define the presence of autochthonous microbiota in fish, electron microscope 
investigations are a useful tool (Ringø et al. 2002a). One might put forward the hypothesis that 
autochthonous microbiota associated closely with the intestinal epithelium form a barrier serving 
as the first defence to limit direct attachment or interaction of pathogenic bacteria to the mucosa 
as reported for endothermic animals (van der Waaij et al., 1972; Forstner, 1978; Slomiany et al., 
1994; Henderson et al., 1996). A remarkable feature of the indigenous intestinal microbiota of fish 
is that situations like stress, antibiotic administration, and even small dietary changes, affect the 
microbial community of the digestive tract. The stability of the intestinal flora is an extremely 
important factor in the natural resistance of fish to infections produced by bacterial pathogens in 
the digestive tract. Interest in the phenomenon of resistance provided by flora components 
against colonization by pathogens has existed for many years in the endothermic literature (for 
review see Hentges, 1983; Hentges, 1992; Tancrède, 1992; Salminen et al., 1996). A fundamental 
question when discussing translocation from the gastrointestinal tract in fish is if the autochthonous 
microbiota has a protective role against pathogenic bacteria by producing antibacterial substances. 
Information about the existence of antibacterial substances produced by bacteria isolated from 
the digestive tract of fish has been demonstrated in several comprehensive reviews (Ringø and 
Gatesoupe, 1998; Gatesoupe, 1999; Hansen and Olafsen, 1999; Ringø and Birkbeck, 1999; Gomez- 
Gill et al., 2000; Gram and Ringø, 2002; Ringø et al., 2002b). However, it is not yet known to what 
extent the natural microbiota of fish may be protective towards pathogen colonization. This is an 
important subject to clarify as the aquaculture industry is plagued by many disease problems, and 
an important goal for the microbiologist should therefore be to increase colonization of the gut by 
bacteria with an antibacterial potential against fish pathogens.

PROBIOTICS

The use of food containing live microorganisms with beneficial properties has been 
known for centuries. O‘Sullivan et al. (1992) referee to Plino who advocated the use of fermented 
milk products in the treatment of various gastrointestinal infections as early as 76 BC. In modem 
time the term “probiotic” was first used in 1954 by Vergin, but since then, many different variations 
of the definition have been proposed (Table 1).

Antibiotic treatment to prevent infection is not recommended because of selection for 
strains resistant to chemotherapy but also because of concern about environmental risk and that 
resistant strains in the environment may transfer R plasmid to human intestinal microbiota. 
Nevertheless, its use is still a practical measure even methods do not prevent pathogenic 
proliferation in the system. Furthermore, the use of antibiotics may dramatically change the 
intestinal microflora of the fish and, thus impair its first-line defences (Austin and Al-Zahrani, 
1988; Strøm and Ringø, 1993). An alternative method to antibiotic treatment would be the use of 
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probiotics, or beneficial bacteria, which override pathogens by producing inhibitory substances, 
or by preventing pathogenic colonization in the host.

Table 2 shows the effect of addition of probiotic microorganisms (Vibrio pelagius, V. 
mediterranei Q40, Aeromonas media, Pseudomonas ssp. Vibrio ssp. and Thalassobacter utilis) 
on fish and crustacean larval survival.

Table 2. Effect of addition of probiotic microorganisms on fish and crustacean larval survival (after Gram and 
Ringø, 2002)

Presumed probiont Pathogen Host organisms Effect on survival Reference

Vibrio pelagius not known Turbot larvae Increase accumulated 
survival from 6-9% on 
day 12 and from day 
0-3% on 16 after 
hatching

Ringø and Vadstein, 
1998

Vibrio mediterranei 
Q40

not known Turbot larvae Increase accumulated 
survival (5 days post 
hatching) in 5 separate 
experiments (e.g. 14 to 
55% in trial lor 75 to 
81% in trial 4).

Huys et al., 2001

Aeromonas media Vibrio
tubiashii

Oyster larvae Increase survival after 
6 days from 4-100%

Gibson et al., 1998

Pseudomonas and 
unknown strain Vibrio

anguillarum
like

Scallop larvae Increase survival from 
5-60% after 14 days

Riquelme et al., 1997

Pseudomonas and 
Vibrio

field trial? 
not known

Scallop larvae Same survival after 
48 hours as antibiotic 
treated tanks

Riquelme et al., 2001

Thalassobacter utilis field trial 
not known 
(Vibrio spp.)

Crab larvae Increase survival 
from 16 to 26%

Nogami and Maeda, 1992 

Nogami et al., 1997

Gatesoupe (1997) tested in his study a siderophore-producing Vibrio as probiotic by 
feeding infected turbot larvae with rotifers enriched by the Vibrio. He reported improved larval 
survival 48 hours after infection. However, 10 days post-infection, no difference was seen in 
survival. In contrast to these results, Ringø and Vadstein (1998) reported that addition of V. 
pelagius, originally isolated from turbot larvae, to early developing turbot larvae had no short 
term effect, but caused a slight increase in survival after 12-16 days compared to larvae exposed 
to Aeromonas caviae. In an earlier study, Ringø et al. (1996) suggested by using an enzyme- 
linked immunosorbent assay that V. pelagius seems to colonize the larval gut when the bacteria 
was added to the tank water at the day of hatching but it was, however, not shown whether the 
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bacterium could persist in the gut if the larvae were removed from the V. pelagius-containing tank 
water.

In a recent study, Huys et al. (2001) searched for beneficial bacterial strains for turbot 
larviculture and reported increased survival of larvae by addition of a V. mediterranei Q40 originally 

isolated from sea bream larvae and an unknown organism isolated from turbot larvae at a 
concentration of 105 bacteria per ml water.

Some information is available on bacterial probiotics in culturing of Pacific oyster 
(Crassostrea gigas Thunberg) larvae. Gibson et al. (1998) used an Aeromonas media-like strain, 
originally isolated from Koi carp (Cyprinus carpio) from the Hawksbury River (Gibson, pers. 
com., 2001 to Lone Gram, Danish Institute for Fisheries Research, Denmark), by adding the probiont 
to waters of oyster larvae which had been challenged with the pathogen V. tubiashii. The 
challenge test caused an increase in numbers of the pathogen and a complete kill of the oyster 
population within five days, but by adding the Aeromonas media strain together with the pathogen, 
reduced numbers of V. tubiashii and resulted in complete survival of the population. These 
results are in accordance with earlier results demonstrating that additions of both algae 
(McCausland et al., 1999) and bacteria (strain CA2) (Douillet and Langdon, 1994) improved 
growth of the Pacific oyster larvae.

Riquelme et al. (1997) investigated 506 bacterial isolates, obtained from laboratory and 
hatchery sources for their potential probiotic effect in Chilean scallop (Argopecten purpuratus 
Lamarck 1819) larval culture. Initially, both a Pseudomonas isolate showing in vitro activity 
against a larval pathogen a V. anguillarum-related strain and an unidentified isolate with no in 
vitro inhibitory activity were found to improve survival from 5% in the non-probiotic treated to 
60% in the probiotic treated over a 14 day period. Screening the 506 bacterial strains, the authors 
found that only 11 isolates were able to inhibit growth of a V. anguillarum related bacterium 
associated with mortality of scallop larvae. However, several strains showing in vitro activity 
increased mortality of scallop larvae. Thus, this study clearly demonstrates the importance of in 
vivo testing, as strains with in vitro effect may be dangerous to the animals, and strains with no 
in vitro effect may have probiotic effects in vivo.

Recently, Riquelme et al. (2001) reported that growth and survival in field trials with 
Chilean scallop larvae treated with pathogen-antagonizing bacteria (Vibrio sp. C33 and 
Pseudomonas sp. 11) at 103 colony forming units per ml (CFU/ml) were the same as when the 
larvae were treated with antibiotics. The antagonizing bacteria were added to the water at the 
initiation of the experiment and again after 48 hours. Controls with no treatment were not included 
as the commercial producer experienced rapid mortality when no treatment was used. In an earlier 
investigation, Riquelme et al. (2000) studied the uptake of pathogen-inhibiting bacterial cultures 
in Chilean scallop larvae, and found that an Arthrobacter was ingested in significant numbers. 
This can be a way of continuously adding the probiotic culture to the scallop larvae. The 
Arthrobacter strain was not tested in in vivo infection trials.

In two studies, Nogami and Maeda (1992) and Nogami et al. (1997) added 105-106 CFU/ml 
of bacterial culture isolated from shrimp pond to seawater used for crab (Portunus trituberculatus) 
culture. The strain was a Gram-negative, non-fermentative, motile rod identified as Thalassobacter 
utilis (Maeda and Liao, 1992; Nogami et al., 1997). The culture, which was added once every 
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seven days, was selected based on its ability to improve survival in in vivo infection trials. The 
organism also inhibited growth of V. anguillarum, in vitro. By adding the culture, a decline in 
concentration of Vibrio spp. in the seawater occurred and crab survival was significantly improved. 
It should be emphasized that the addition of five other microbial cultures (e.g. a Bacillus subtilis) 
accelerated mortality of the larvae (Nogami and Maeda, 1992).

Prevention of bacterial disease in growing fish is somewhat easier than in larvae, fry and 
juveniles. However, vaccination of fish smaller than 35 g (Intervet International, The Netherlands; 
Aqua Health Ltd, Canada) is not recommended, making the smaller stages of fish still susceptible 
to infection. For a range of bacterial pathogen-host combinations, good vaccines have been 
developed, and their optimization and use will be facilitated as further understanding of the 
pathogen virulence factors and of the host immune system emerges. The studies described in 
Table 3 should be regarded as trials of the probiotic concept rather than as suggestions for actual 
use of probiotics. Both the bacteriophage, Tetraselmis, Gram-positive bacteria (bacilli and 
carnobacteria, a lactic acid bacteria) and Gram-negative bacteria such as Vibrio and Pseudomonas 
have been evaluated as potential probionts and the experiments cover both additions to the 
rearing water or incorporation in the feed (Table 3).

The pathogens which are most frequently used include; Pseudomonas plecoglossicida, 
anguillarum, V. ordalli, Yersinia ruckeri, and A. salmonicida. In most of the cited studies in 
Table 3 increased survival of the host organisms were observed.

Readers who want more information about probiotics in aquaculture are referred to the 
reviews of Gatesoupe (1999), Gomez-Gil et al. (2000), Verschuere et al. (2000) and Gram and Ringø 
(2002).

LACTIC ACID BACTERIA (LAB)

It is suggested that lactic acid bacteria (LAB) along with other bacteria that belong to the 
autochthonous (indigenous) microbiota of aquatic animals might be an important part of the 
defence mechanism against colonization of fish pathogens in the gastro-intestinal tract. In addition 
to the antagonistic microorganisms colonizing the mucus surface in the natural microbial defence 
mechanisms, it has been shown that the surface mucus also plays a role in the prevention of 
colonization by parasites, bacteria and fungi.

Effects of LAB administration on intestinal microbiota

It is well known that LAB under normal circumstances are not numerically dominant in 
the digestive tract of fish (Ringø and Gatesoupe, 1998). In order to increase the proportion of 
LAB, some investigations have attempted to increase their population level by dietary factors 
such as: (1) chromic oxide (Ringø, 1993); (2) different oils (Ringø et al., 1998; Ringø et al., 2002b); 
(3) high and low dietary lipids (Ringø and Olsen, 1999); and (4) inulin (Ringø, Myklebust and 
Olsen, unpublished results). Another important criterion for the use of LAB in commercial 
aquaculture, is the colonization potential of LAB in the fish gut, as Vibrionaceae may also persist 
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for days or weeks in fish (Austin et al., 1995; Munro et al., 1995; Ringø and Vadstein, 1998). Some 
recent studies have demonstrated that carnobacteria strains are able to survive for several days 
in the intestine of larval and juvenile fish (Strøm and Ringø, 1993; Jöborn et al., 1997; Gildberg and 
Mikkelsen, 1998; Ringø, 1999). Three of these studies (Jöborn et al., 1997; Gildberg and Mikkelsen, 
1998; Ringø, 1999) have suggested that there is apparently no host specificity with regard to 
colonization of the fish gut with carnobacteria, contrary to endothermic animals where adhesion 
of LAB appears to be complicated by host specificity (Lin and Savage, 1984; Fuller, 1986, 1989; 
Conway, 1989). However, the colonization site in the fish gut is also an important criterion. In a 
recent study, Gildberg and Mikkelsen (1998) administered two Carnobacterium divergens strains 
originally isolated from the intestine of mature Atlantic cod (Gadus morhua L.) and Atlantic 
salmon, to Atlantic cod juveniles via the food. When the Atlantic cod isolate was used, the 
authors only detected C. divergens in pyloric caeca, while the concentration of the bacteria was 
approximately ten fold higher in the pyloric caeca than in the intestine when the salmon isolate 
was used.

Transient bacteria may also be efficient if the cells are introduced at high dose. Moreover, 
as LAB may exert antibacterial effects against undesirable microbes, some investigators have 
attempted to increase the proportion of LAB associated with the fish digestive tract. In a study 
with four days old Atlantic cod larvae, Strøm and Ringø (1993) used an antagonistic LAB strain 
which, when added to the rearing water, favourably influenced the intestinal microbiota of the 
larvae by increasing the proportion of LAB from approximately 5% up to 70% and by a subsequent 
decrease in the proportion of the bacteria genera Pseudomonas, Cytophaga/Flexibacter and 
Aeromonas (Table 4). These results indicate that the LAB are able to colonize and may comprise 
a major part of the autochthonous microbiota in the gut of the larvae. A similar increase in 
intestinal LAB was also found in Atlantic cod fry fed a diet containing C. divergens (Gildberg et 
al., 1997) (Table 4). In a study with Atlantic salmon fry, Gildberg et al. (1995) demonstrated that 
administration of LAB reported as Lb. plantarum, but later reclassified as C. divergens (Ringø et 
al., 2001a) increased the proportion of adherent LAB to intestinal wall from nil to 100% (Table 4).

Recently, Byun et al. (1997) evaluated the effect of LAB (Lactobacillus sp. DS-12) 
administration via the feed on the intestinal microbiota of flounder (Paralichthys olivaceus) after 
one month of feeding (Table 4). Lactobacillus sp. DS-12 was not detected in the intestine of the 
control group, but 107/g LAB were found in the GIT when the fish were fed a LAB supplemented 
feed.

In a recent study, Bogut et al. (2000) evaluated the effect of Enterococcus faecium on the 
intestinal microbiota of Sheat fish (Silurus glanis). In this study, the fish were exposed to E. 
faecium by including the bacteria in the diet. After approximately two months of feeding, some 
interesting differences in the intestinal microbiota were observed between the two rearing groups. 
Enterococcus faecium-administration decreased the population level of Staphylococcus aureus, 
Escherichia coli and other bacteria of the family Enterobacteriaceae, and resulted in complete 
elimination of Clostridium spp. (Table 4).

Only one investigation has evaluated the influence of a commercial LAB preparation on 
the allochtonous intestinal microbiota. Supplementation of one gram of E. faecium M74 per 100 
kg feed influenced the intestinal microbiota of 0+ Israeli carp (Cyprinus carpio) to some extent 
(Bogut et al., 1998). While E. coli disappeared from the intestinal microbiota of the fish after 14 
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days and onwards by feeding the probiotic preparation (Table 4), the population level of 
Enterobacteriaceae, E. faecalis, S. aureus, Bacillus spp. and Clostridium spp. were not reduced 
as a result of including E. faecium into the diet (Bogut et al., 1998). The authors suggested a high 
adhesive ability in the epithelium of carp digestive tract for E. faecium. However, as they isolated 
the allochthonous (transient) intestinal microbiota, convincing experimental evidence was not 
provided.

When dealing with the potential of probiotics (for example LAB) in aquaculture the 
fundamental question arises whether it is possible to colonize and maintain the probiotic bacteria 
within the digestive tract. This is particularly important when long-term exposure may be required 
for the probiotic effect. In this respect, electron microscope investigations are a useful tool 
(Ringø et al., 2001b, 2002a).

During the last decade some reports have been published on the nutritional contribution 
of LAB to the production rate of rotifer Brachionus plicatilis (Gatesoupe, 1990; Gatesoupe, 
1991), while the control of the microbiota of rotifer cultures has received less attention.

Challenges in vivo

The major factors involved in the biocontrol of bacterial pathogens in the gastrointestinal 
tract are primarily those regulating the composition, functions and interactions of indigenous 
microbial populations with the animal tissues. This concept is supported by repeated observations 
that strains of transient enteropathogens can colonize intestinal habitats of endothermic animals. 
The fact that fish contain intestinal microbiota with antagonistic effects against fish pathogens 
has prompted investigators to conduct challenge experiments with LAB during the last decade 
(Gatesoupe, 1994; Gildberg et al., 1995, 1997; Gildberg and Mikkelsen, 1998; Harzevili et al., 1998). 
However, in these studies some conflicting results on the mortality were reported when the 
control group was compared with probiotic treatment (Table 5).

Gatesoupe (1994) suggested that in vivo experiments with turbot larvae using rotifers 
grown on LAB strains (resembling those of Lactobacillus plantarum or Carnobacterium sp.) 
improved the disease resistance in challenge tests with pathogenic Vibrio (V. splendidus strain 
VS 11). However, the results reported in this study were registered after 48 and 72 hours, beyond 
which the mortality pattern was not discussed. In three papers, Gildberg and Mikkelsen (1998) 
and Gildberg et al. (1995; 1997) have used two LAB strains originally isolated from Atlantic 
salmon and Atlantic cod by Strøm (1988). These two isolates were recently identified by 16S 
rDNA and AFLP™ fingerprinting as C. divergens (Ringø et al., 2001a). In challenge trials with 
cohabitants with A. salmonicida, Gildberg et al. (1995) in contrast to the expectations, registered 
highest mortality of Atlantic salmon fry with fish given the diet containing C. divergens, originally 
isolated from Atlantic salmon intestine. In their study with Atlantic cod fry, Gildberg and Mikkelsen 
(1998) observed the same cumulative mortality independent whether the C. divergens isolates 
supplemented to the commercial feed were originally isolated from the digestive tract of Atlantic 
cod or Atlantic salmon, when the fish were bath exposed to V. anguillarum. On the other hand, 
an improved disease resistance of Atlantic cod fry was observed by supplementing a commercially 
dry feed with a strain of C. divergens originally isolated from the cod (Gildberg et al., 1997). The 
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explanation for these conflicting results has not been elucidated. Gildberg and Mikkelsen (1998) 
put forward a hypothesis that bacteriocin production can be inducible and may not occur if the 
bacteria are not frequently challenged with inhibitors as previously demonstrated by Schrøder et 
al. (1980). Furthermore, a recent study by Nikoskelainen et al. (2001) used the human probiotic 
Lactobacillus rhamnosus in a challenge test with A. salmonicida with promising results (Table 
5). These results should stimulate fish microbiologist to use human probiotic LAB in future 
studies.

If the intestine is involved in infection as suggested by several authors, the fundamental 
question arises whether there are differences between the posterior part of the intestine and the 
hindgut region of the intestine? It is well established that the intestine in an immature or 
inflammatory state has an enhanced capacity to absorb intact macromolecules (for review see 
Olsen and Ringø, 1997). Furthermore, some studies report endocytosis of bacteria by enterocytes 
in the epithelial border of hindgut of herring (Clupea harengus) larvae (Hansen et al., 1992; 
Hansen and Olafsen, 1999), herring and Atlantic cod larvae (Olafsen and Hansen, 1992) and 36 
days old juvenile turbot (Grisez et al., 1996). It is generally accepted that mature and non
inflammatory intestines of adult salmonids are not permeable to microparticulates in contrast to 
the mammalian gastrointestinal tract where M-cells are active in phagocytosis. However, a recent 
study demonstrated endocytosis of bacteria by enterocytes in the epithelial border of hindgut of 
adult salmonid fish (Fig. 6a), as well as in the posterior part of the intestine (pyloric caeca) (Fig. 6b) 
(Ringø et al., 2002b). These results are in accordance with observations made by Vigneulle and 
Laurencin (1991) and Tamura et al. (1993) who measured phagocytosis of fixed V. anguillarum in 
the posterior intestine of rainbow trout (Oncorhynchus mykiss), sea bass (Dicentrarchus labrax), 
turbot (Scophthalmus maximus) and eel (Anguilla anguilla).

Figure 6. Endocytosis of bacteria demonstrated in the hindgut region (a) and 
pyloric caeca (b) of Arctic charr (Salvelinus alpinus L.). (after Ringø 
et al., 2002b)
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The observations of Vigneulle and Laurencin (1991), Tamura et al. (1993) and Ringø et al. 
(2001b, 2002a, 2002b) indicate that the intestine is involved in bacterial translocation. Yet no clear 
evidence is available on possible differences between different parts of the intestine with regard 
to bacterial infection.

It is well known that rotifers are often suspected of being a vector for bacterial infections 
to the predating organisms (Perez-Benavente and Gatesoupe, 1988; Tanasomwang and Muroga, 
1988; Nicolas et al., 1989). It is therefore surprising that studies dealing with the proliferation of 
larval pathogens in rotifer cultures are so scarce (Gatesoupe, 1991; Hazevili et al., 1998). Gatesoupe 
(1991) reported that the proliferation of A. salmonicida that accidentally appeared in the experimental 
rotifer culture was inhibited by treatment with Lb. plantarum. Hazevili et al. (1998) reported that 
administration of the probiotic strain Lac. lactis AR21 under sub-optimal feeding regime, 
counteracted the growth inhibition of the rotifers due to V. anguillarum.

Readers with special interest in lactic acid bacteria in fish are referred to the comprehensive 
reviews of Ringø and Gatesoupe (1998) and Ringø et al., 2002c.

PREBIOTICS

Specific bacterial pathogens can be an important cause of mortality as intensive husbandry 
practices often result in breakdown of natural barriers between the host and pathogens. Nowadays, 
the prevention and control of these diseases has concentrated on good husbandry practices and 
the use of vaccines and antibiotics. However, treatment by feeding antibiotics may cause the 
development of resistant bacteria through plasmids or bacteriophages (Towner, 1995). Therefore, 
there is an increased interest within the aquaculture industry in the control or elimination of 
antimicrobial use. Alternative methods need to be developed to maintain a healthy microbial 
environment. Two such methods that are gaining acceptance within the industry are the use of 
probiotic bacteria or prebiotics to control potential pathogens.

During the last decade, several reviews have dealt with the potential of probionts in 
aquaculture (Ringø and Gatesoupe, 1998; Gatesoupe, 1999; Hansen and Olafsen, 1999; Ringø and 
Birkbeck, 1999; Gomez-Gill et al., 2000; Verschuere et al., 2000; Gram and Ringø, 2002; Ringø et al., 
2002c). It is therefore a pertinent question whether it is possible to colonize and maintain probiotic 
bacteria within the digestive tract. This is particularly important when long-term exposure is 
required for the probiotic effect. However, to date, there is no real evidence demonstrating the 
preventive effect of probionts against colonization and adherence of fish pathogenic bacteria in 
aquaculture. The reason for this may be that the probionts used are unable to colonize the mucus 
layer of the digestive tract or external surfaces. Examination of adhesion has become a standard 
procedure for selecting new probiotic strains for human application (Salminen et al., 1996), but it 
is less common in aquaculture.

The addition of high doses of probiotic strains (for example, lactic acid bacteria) to 
established microbial communities of fish provoked a temporary change in the composition of the 
intestinal microbial community. However, within a few days after administration had stopped, the 
added strains showed a sharp decrease and were lost from the gastrointestinal tract (Jöborn et al.,
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1997; Ringø and Gatesoupe, 1998). Another way to colonize and increase the population level of 
beneficial bacteria with antagonistic ability is the use of prebiotics. The modern concept of 
prebiotics implies the use of selective agents to favour growth of the protective indigenous gut 
microbiota. Dietary fiber is a prebiotic that belongs to the broad category of carbohydrates. 
Burkitt et al. (1972) defined dietary fiber as “the sum of polysaccharides and lignin which are not 
digested by the endogenous secretions of the human gastrointestinal tract.” They can be 
classified into soluble (e.g., inulin and oligofructose), insoluble (e.g., cellulose) or mixed (e.g., 
bran). It is well known from endothermic investigations that dietary fibers are fermented by the 
anaerobic intestinal microbiota, primarily those colonizing the large intestine (Roberfroid, 1993; 
Gibson et al., 1995; Roberfroid, 1995; Gibson, 1998; Rumessen and Gudmand-Høyer, 1998), leading 
to the production of lactic acid, short chain fatty acids (SCFA-acetate, propionate, and butyrate) 
and gases (H2, CO2 and CH4) (Roberfroid, 1993) that are utilized by the host (Schneeman. 1999). 
Inulin, is a polydisperse carbohydrate consisting mainly of β (2→1) fructosyl-fructose links, 
generally referred to as fructan and is found in various edible fruits and vegetables such as wheat, 
onions, leeks, garlic, asparagus, artichokes and bananas (Roberfroid, 1993; Van Loo et al., 1995). 
Although inulin is not a natural fiber in fish diet, the prebiotic potential of inulin and other dietary 
fibers may also have interesting applications in aquaculture. Some information is available about 
fermentation of inulin by fish gut microbiota, notably, Carnobacterium piscicola (Ringø et al., 
1998), C. mobile (Ringø and Olsen, 1999), and Carnobacterium spp. (Ringø and Olsen, 1999; 
Ringø et al., 2001a). It is also known that dietary inulin resulted in damage to intestinal enterocytes 
of the salmonid fish Arctic charr (Fig. 7) (Olsen et al., 2001) compared to normal enterocytes (Fig. 
8), and that dietary inulin alters the adherent gut microbiota of Arctic charr (Ringø, unpublished 
results). However, the effect of dietary inulin on fish welfare is not yet known.

Figure 7. The epithelium in the hindgut of Arctic charr 
(Salvelinus alpinus L.) fed dietary inulin. The 
cells are highly vacuolated and many of the 
vacuoles have lamellar content (small arrows) 
which may be inulin. The apical surface of 
these cells shows sign of damage including 
loss of membrane and microvilli (large 
arrows). (after Olsen et al., 2001)
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Figure 8. Epithelial cells in the hindgut of Arctic charr 
(Salvelinus alpinus L.) fed control diet 
(dietary dextrin). The columnar cells 
typically show numerous vacuoles varying 
in size and electron density (arrows). 
Cytoplasm, microvilli and intracellular 
organelles appear normal. In the upper 
middle part of the field, an effete 
enterocyting is probably being shed as part 
of normal epithelial turnover. (after Olsen 
et al., 2001)
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